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A: Math. Gen., Vol. 9. NO. 4, 1976. Printed in Great Britain. @ 1976 rw 

!mered eight-vertex model on the Kagome lattice 

K Y Lint 
physics Department, National Tsing Hua University, Hsinchu, Taiwan, Republicof China 

Received 22 Atigust 1975 

Abstract. An eight-vertex model on the Kagomt lattice with staggered (site-dependent) 
vertex weights is considered. The soluble case of a free-fermion model is solved by the 
Pfafiian method. The staggered free-fermion model may exhibit up to five phase transi- 
tions. In general the specific heat has logarithmic singularities, except in some special cases 
where the system exhibits first- or second-order phase transition(s). 

’Ihe eight-vertex model on the square.lattice was solved by Baxter (1971). Wegner 
(1972) pointed out that the Ashkin-Teller model (Ashkin and Teller 1943) on the 
4uarelattice is equivalent to a special case of the staggered eight-vertex model on the 
square lattice. Wu (1975, private communication) showed that the triangular Ashkin- 
Tellermodel (Enting 1975) is equivalent to a special case of the staggered eight-vertex 
model on the KagomC lattice. The Pfaffian solutions of the staggered ice-rule vertex 
model on the square and Kagomk lattices have been obtained respectively by Wu and 
b(1975) and by Lin (1975). Recently Hsue er a1 (1975) considered the general 
Itaggered eight-vertex model on the square lattice. They discussed in detail the soluble 
rase of a free-fermion model where the system may exhibit up to three phase 
‘JWhnS. In general the specific heat has logarithmic singularities, except in 
spedalcasesit diverges with an exponent a = f above the unique transition temperature 
Tcmdthe system is frozen below T,. 

Themotivation for this pap,er is to generalize the work of Hsue, Lin and Wu to the 
lattice. The staggered eight-vertex model on the KagomC lattice is described in 

P2.Srolmetryrelations are discussed in 9 3. When the vertices satisfy the free-fermion 
mnG~on, the model can be solved by the Pfaffian method (Montroll 1964). The 
Mansolution is given in Q 4. There are four cases where the free-fermion condition 
!?fiedat all temperatures. These cases are examined in detail in 0 5. Our conclusion 
W e n  in 0 6. 

Dehtion of the model 

pkce On the bonds of a KagomC lattice L of N sites and allow only those 
Onfisurati0ns with an even number of arrows pointing into each vertex. The three 
@~CeS of L are denoted by A, B and C, as shown in figure 1. The eight Possible 
‘%‘&I in by the National Science Council, Republic of China. 
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C 

Fignre 1. The Kagom6 lattice with three sublattices A, B and C. 

configurations allowed at each vertex are shown in figure 2, where each vertex type is 
assigned a weight. Let the vertex weights be 

{U} = { w l ,  w2,  . . . , 08} 
{w'}  = {ai, U;, . . . , o&} 
{o"} = (07,  U;, . . . , U:} 

on A 

on B 

on C. 

1 2 3 4 5 6 7 8  + + 7L -+ + % - S L Y -  

x x x x x X H  
c w ;  w; w; w; w ;  w;  w; w; 

%IUe 2. The eight-vertex configurations and the associated weighs. 

The partition function is 
(21 

and 
the 'W 

2 = z(rrw~)(rrw:"~)(rrIo:'"~) 

where the summation is extended to all allowed arrow configurations on L9 

n L ( d ,  n:? is the number of ith-type. sites on A(& C). me goal is to comPute 
energy' 

1 
N+W N 

$ = Iim -In 2. 

In ferroelectric language the vertex weights are the Boltzmann factors 
(4) oi = exp(-Be,) o: = exp(-pe:) = exp(-pe'iD 
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&ss = l/kT, k is the Boltzmann constant, Tis the temperature, and e,, el,  e; are the 

1 SJrnunetry relatiom 

ne 
a&derationS. w e  write 

function 2 possesses some symmetry relations which follow from general 

Z = Z( 12345678, 1’2’3’4’5’6‘7’8’, 1”2”3“4’r~r’~7r’8’r) (5 )  
where j ,  j ’ ,  i” denote respectively o,, U:,  oy. Reversing all arrows along one of the three 
&dons in the Kagom6 lattice, we obtain 

Z = 2(43217856,3‘4’1’2’8’7’6’5’, 1”2”3”4”5”6”7”8”) 

= Z(34128765, 1‘2’3’4‘5’6’7’8’, 3”4”1”2”8”7”6”5”) 

= Z( 12345678,4’3‘2’1’7’8’5‘6’, 4”3”2”1”7”8”5”6”). (6) 

(7) 

Revershg all arrows implies 

2 = 2(2  1436587,2’1’4’3’6’5’8’7’, 2”1”4“3”6”5”8”7”). 

Refection symmetry implies 

Z = 2(1’2’4’3’6‘5’7’8’, 12436578, 1”2”4”3”6”5”7”8”) 

= 2(2‘1’3’4’6’5’7’8’, 21346578,2”1”3”4”6”5”7”8”) 

= 2(2  1346578, 3‘‘4’‘1”2”5”6”7”8”, 3’4’1 ’2‘5’6‘7‘8’) 

= Z( 12436578,4”3”2”1”5”6”7”8”, 4‘3’2‘1 ’5’6‘7’8’) 

= 2(4‘r3’r2”1”5”6”7’r8rr, 2’1’3’4’6’5’7’8’, 43215678) 

= 2(3”4”1”2”5”6”7”8”, 1’2‘4’3’6‘5’7’8’, 34125678). (8) 
Rotation symmetry leads to 

2 = 2(2‘1‘4’3‘5’6’7’8’, 4”3”1”2”5”6”7”8”, 43 125678) 

= 2(3”4”2”1”6”5”7”8”, 21436578,3‘4‘2’1‘5‘6‘7’8‘). (9) 
there is the weak-graph symmetry (Nagle and Temperley 1968) which is a local 

mqof a lattice and is valid even if the weights are site dependent. 

4 solution 

‘!enex model can be solved by the Pfaffian method if the free-fermion condition is 
wedat each vertex (Fan and Wu 1970). In our model, the condition reads 
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Under this condition the partition function iS equal to a Pfaffian which is evdwtedis 
h e  appendix. The result is 
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specific, we consider the non-analyticity of i,h at 0, = & + a3 + a4. Following Hsue et al 
(1975), we expand F ( 8 , d )  = 0 about 8 = 4 = 0 and obtain 

&re only the lower integration limits are needed. The above integration can be 
performed by first diagonalizing the quadratic form in 8 and 4. One fmds (Hsue et ai 
” 5 )  

+singular-(T-TJ2 l n l ~ - ~ c I  (1 7) 

wm leads to the king behaviour. The specific heat diverges logarithmically. The 
ZguIllent breaks down if 

6’ = 4ay (18) 

atT,(Hsue er al 1975). The condition (18) implies that there exist zeros of F(~ ,c#J)  = 0 
which are not given by (14). The critical behaviour of + in this special case will be 
dim.sed in the following section. 

5. Exactly soinble models 

’Ihefree-fermion condition (10) can be satisfied at all temperatures provided the vertex 
energies ei, e:, e! satisfy some identities. There are four exactly soluble models (others 
are related to them by symmetry): 

e3 + e4 = e,  + e6 

ei+e; = e;+eA 
eg+el=e;+eg 

e3 + e4 = e, + e6 

e;+ e: = e;+e; 
e;+e;=e;+e;( 

e3 +e4 = e7+e8 

e; +e; = e.S+e; 
e; +e; = e;+ea 

e3 + e4 = e, + e6 
e; +e; = e;+ e; 
e; + el; = e,”+ e:. 

(19) 

Model 1 

bOns (19) imply = b = = d = e  = f =  0. This model is identical to the free- 
‘honmodel of Fan and WU (1970) except that each ai is the summation Of four 

factors instead of one. The critical condition is A( Tc) = 0. In the model of 
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Fan and Wu, A = 0 has one solution at T = T, and A(T) > ( < )O if and onlyif qc)* 
Ln our model, A( T,) = 0 may have up to five solutions. c 

~f a1~a,0 ,  # 0, then $ cannot be evaluated in a'closed form but the first derivative 
can be expressed in terms of the complete elliptical integrals of the first and third 
(Green and Hurst 1964). Consequently the specific heat has a logarithmic divergenceat 
each transition temperature. The system may exhibit up to five phase transitions. F~ 
example, if e 2 = e 7 = e 8 = w ,  el=e;=e';=e$=e!=e2=0,  e 3 - - e4= e5 = e6 =E>q 
e: = eg = -0.9~, e: = e; = 205 then we have 

and the critical condition implies 

0, =&+i&+fl4  at T =  Ti  

0 2  = 0, + 0 3  + 0 4  at T=T: ,  T f  

0 4  = a, +& +a3 at T =  T:, T,' (241 
where Ti > TL if i > j. 

If one of ai vanishes, this model reduces to the modified KDP model of Wu (1968). 
A second-order phase transition occurs at each transition temperature determined by 
A( T,) = 0. The specific heat behaves as A-'/2 when A approaches zero from above. "he 
system may exhibit up to four phase transitions. For example, if e ,  = e7 = el=e.S=a, 
e3= e4= e5=e6= e; = e:= 0, e'  3 -  - e'  4 =e;= e:= 1 0 ~  >O, eL=40e, e2= e8=-9e, then 
we have 

and A = 0 implies 

Cn, = n3 +a4 at T =  T,' 
%=%+a4 at T = T:, T f  (26) 

0 4 = % + %  a t T = c  

where Ti> TL if i > j .  In this case we have (Wu 1968) 
T S  T: 

T >  T: 
Z3TZ=T:  (27) 

where 

The specific heat diverges with an exponent? CY = $ at T = Ti, 2 and a'=2 at Ts I", 

(28) 
cos 41 =(a:-@-a:)/2i-lqa3. 

1 

'l We use the standard definitions of critical-point exponents (Stanley 1971). 
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It hinteresting to note that the specific heat vanishes above the critical temperame 

~ i y  we consider the situation where two of ai vanish. For example, if el = ez = 
&.,a example. 

,,=,,=CO then we have fl, =a3 = 0 and 

$ = i In “{%, a,>, (29) 

&re the b t  derivative of rL has a jump discontinuity at & = a4 (first-order phase 
transition). The critical condition % = a4 may have up to two solutions. For example, 

we have 
ife;=e!=cO, e4= e5 = e6 = 1QE >O, e$= e: = - g ~ ,  e3 = e : =  e; = e;= e:= e:=(), then 

&=2e-” f14 = 1 + 3 e-”” (30) 
ad 4 = Q4 has two SOhItionS. 

5.2. Model 2 
wtions (20) imply b = c = d = e = f = 0; we define 

U = QQ, - a, %& = a,& + a, a = e, p=e++.  
’Ihe Eree energy is now given by 

where 

+2(i&fl4-&fl*) Cos(a - p )  +2(&$&-a5fl6) cos(a +p) .  (33) 

Note that $ is now exactly of the form of the free energy for a uniform free-fermion 
model (Fan and Wu 1970, equation (16)). The integral (32) has been investigated by 
Hsue etal(l975). They found that the critical condition is given by A(TJ = 0. 

u&Q&Q8 # 0, then I) cannot be evaluated in a closed form but its first derivative 
isgiven by the complete elliptical integrals of the first and third kinds (Green and Hurst 
1964). Therefore the specific heat has a logarithmic divergence at each transition 

Since A(TJ = 0 may have as much as five solutions, the system may 
*$ituP to five phase transitions. 

ufhf&bn8 = 0, then we have (Hsue et aE 1975, equations (42-4)) 

(34) 

‘wcheat  behaves as A-’/* when A+,+. The system may exhibit up to four 
bsitions. 
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5.3. Model 3 
Equations (21) imply d = e = f = 0. The case Of U = b = c = 0 reduces to model 1. fi 
cases of (a#O, b=c=O), ( b Z 0 ,  a=c=O), ( ~ $ 0 ,  a=b=O) reduce to mdel2 .  
Otherwise neither + nor its derivatives can be expressed in terms of known fundom. 
Following the argument of Hsue et a1 (1975), we have 

+singular - t2 ln It l f =  (T-  Tc)/Tc+O. (36) 
n e  critical condition is A(TJ = 0 which may have up to five solutions. 

5.4. Model 4 

Equations (22) imply b = e = f = 0. In the general case where none of Q, c, d vanish, 
neither + nor its derivatives can be expressed in terms of known functions. Following 
the argument of Hsue et a1 (1975), the critical condition is A(TJ = 0 and the Singular 
behaviour of + is given by (36). The case of a = c = d = 0 reduces to model 1. The case 
of a # 0, c = d = O  (or c # 0, a = d = 0) reduces to model 2. The case of d=O, aZO, 
c # 0 reduces to model 3. 

The case of a = c = 0, d # 0 implies 

el = es e2 = e7 e3 = e5 e4 = e6 
e; = e ;  e; = e; e; = e; e; = e.5 (37) 

e" = e; e; =e;( e; =e;  el; =e; .  

It follows from (37) that ill = f13, f12 = f14 and 

F(0, 4)=2(fkT+fl:)-2(fl?-fl:) cos 0-4d sin2& (38) 

It can be shown that the expression (38) is always greater than zero and therefore 1(1 has 
no singularity. 

The case of c = 0, a # 0, d # 0 implies 

(39) el = es e2 = e7 e3 = e5 e4 = e6 

e ;  = e; e l  = e: e& = e; e; = e;. 

The free energy can be written in the form 
, r 2 a  ,257 

where 

F(a, P )  = Fo(a, p )  -4d sin2a 

(40) 

(41) 

ol 
and FO is defined by (33). The integral (40) has been discussed in detail by 
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11g5, (57)). They found that the critical condition is A(T,) = 0 and 

ne Singular part of i+k behaves as (36) except for 

A1=&f14=0 or A2=i’l1iI3=0. (47) 

$singular - t 3 / 2  t+0+. (48) 

Under thecondition (47) Q is a complete square and (Hsue et a1 1975, equation (68)) 

The condition (47) can be realized by taking, e.g., 

e3 = e 5 =  e; = e; = e; = e: = e :=m.  (49) 

case of a = 0, c # 0, d # 0 can be treated in the same way. 

we have considered the staggered free-fermion eight-vertex model on the Kagomt 
klice and examined the exactly soluble cases where the vertex weights satisfy the 
&-fermion condition at all temperatures. We found that the critical condition is 
always given by A(T,) = 0 which may have as many as five solutions. In general the 
SPecificheat has logarithmic singularities except in some special cases where the system 

exhibit up to four second-order phase transitions (a or a’=+) or up to two 
&-order phase transitions. 

~OWledgment 

is indebted to Professor F Y Wu for suggesting this problem and encourage- 
ment 

A-ppeah m a n  solution 
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cell is shown in figure 3. FoIIowing the same procedure as Hsue et al(19751, we have 

Equation (A.l) reduces to equation (6) after some algebra. 

Figme 3. A unit cell of the dimer lattice LA. 
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